Approximations of the Navier–Stokes equations for high Reynolds number flows past a solid wall

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High–Reynolds Number Wall Turbulence

We review wall-bounded turbulent flows, particularly high–Reynolds number, zero–pressure gradient boundary layers, and fully developed pipe and channel flows. It is apparent that the approach to an asymptotically high– Reynolds number state is slow, but at a sufficiently high Reynolds number the log law remains a fundamental part of the mean flow description. With regard to the coherent motions...

متن کامل

Simulation of High Reynolds Number Vascular Flows

While much of the hemodynamics in a healthy human body has low Reynolds number, resulting in laminar flow, relatively high Reynolds number flow is observed at some specific locations, which can cause transition to turbulence. (The term “turbulence” refers to the motion of a fluid having local velocities and pressures that fluctuate randomly.) For example, the peak Reynolds number in the human a...

متن کامل

A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows

A subgrid turbulence model for the lattice Boltzmann method is proposed for high Reynolds number fluid flow applications. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of the lattice Boltzmann method for handling arbitrary boundaries and is easily implemented on parallel machines. The method is appl...

متن کامل

A pseudo-penalization method for high Reynolds number unsteady flows

A pseudo-penalization method, i.e., an implicit formulation of the standard volume penalization method, is introduced and validated by considering the 2D wake of a cylinder at Reynolds number Re = 200. © 2007 IMACS. Published by Elsevier B.V. All rights reserved. MSC: 76D05; 76D25; 76M22

متن کامل

A Multigrid Smoother for High Reynolds Number Flows∗

Abstract. The linearized Navier–Stokes equations are solved in two space dimensions using a multigrid method where a semiimplicit Runge–Kutta scheme is the smoother. Explicit time-integration in the streamwise direction is combined with implicit integration in the body-normal direction. Thereby the stiffness of the equations due to the disparate scales in the boundary layer is removed. Reynolds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2004

ISSN: 0377-0427

DOI: 10.1016/j.cam.2003.09.035